ABROGATION OF CARBON TETRACHLORIDE (CCL\textsubscript{4}) INDUCED HEPATOTOXICITY BY AROGYAVARDHANI IN WISTAR RATS

VENU GOPAL JONNALAGADDA*, N.A. SELKAR, SAMPATH KUMAR VEMULA, M.B.CHAWDA, K.S.THAKUR, M.K.VAHALIA, SHEKHAR S.SHITUT

Shree Dhoopathapeshwar Ayurvedic Research Foundation (SDARF), Panvel, Navi Mumbai, Maharashtra, India-410206.

Received: 13 November 2013, Revised and Accepted: 7 December 2013

ABSTRACT

From long back Arogyavardhani, a herbo-mineral preparation is used in the affections of liver & spleen disorders as an ayurvedic preparation. The present study was aimed to evaluate the hepatoprotective effect of Arogyavardhani in carbon tetrachloride (CCL\textsubscript{4}) induced liver damage in wistar rats. In the present study Arogyavardhani A (65 mg/kg, p.o) and Arogyavardhani B (65 mg/kg, p.o) were used to screen the hepatoprotective effect. Hepatotoxicity was induced by the CCL\textsubscript{4} (3 ml/kg, p.o), and silymarin (50 mg/kg, p.o) was taken as a standard. Biochemical parameters like serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), total bilirubin and direct bilirubin levels were estimated. Histopathological examination of liver samples were also done. CCL\textsubscript{4} treated groups showed the elevated levels of biochemical parameters like SGOT, SGPT, ALP, total bilirubin, and direct bilirubin levels. In case of Arogyavardhani treated groups significantly (p<0.01) prevented this hepatotoxicity. Histopathological examinations revealed the post-treatment of Arogyavardhani exhibited the protection of liver tissue from CCL\textsubscript{4} induced hepatotoxicity. The observed results strongly support the hepatoprotective activity of Arogyavardhani against CCL\textsubscript{4} induced hepatotoxicity.

Keywords: Arogyavardhani, CCL\textsubscript{4}, Hepatotoxicity, SGOT, SGPT.

INTRODUCTION

Liver was called as a chemical factory of body, because most of the biochemical and metabolic pathways are continued here [1]. So, liver is a major affected organ for the different types of chemical toxicities [2]. Many liver diseases are now challenging to treat in the modern scientific community [3]. Now-a-days, there are different types of plant derived and allopathic medicines are used in the management of hepatic disorders [4,5].

Ayurveda is one of the widely practiced system of traditional medicine in India. It mainly recommends the use of plant based medicines, mineral based medicines such as sulfur (S), mercury (Hg), arsenic (As), lead (Pb), copper sulfate (CuSO\textsubscript{4}) and gold (Au) for treating wide variety of disease conditions. The main specialty of Ayurveda practice of mineral, metallic compounds and herbal medicines use is known as rasa shastra [6-8]. Arogyavardhani is an ayurvedic herbo-mineral formulation and it is used in the treatment of affections of hepatic & Spleen disorders, Jaundice, Pachana (Indigestion), Durdharsha Kshutprapartini (Loss of appetite) and Kushtha (Skin diseases). It consists of Shodhit Parada, Shodhit Gandhaka (purified sulfur), Loha bhasma (iron compound), Abhraka bhasma (nica), Tamra bhasma (copper), Shodhit Shilajatu (Asphaltum), choorna of Haritaki (Terminalia chebula), Bibhitaka (Terminalia bellerica), Amalaki (Emblica officinalis), Shodhit Guggulu (Commiphora weightii), Chitraka (Plumbago zeylanica) root, Katuka (Picrorhiza kurroa) rhizome, and processed in Nimba (Azadirachta indica) leaf swaras [9].

Carbon Tetra Chloride (CCL\textsubscript{4}) is a prototype of chemical used to induce the hepatotoxicity widely [10]. CCL\textsubscript{4} induced hepatotoxicity is mainly due to its intermediate reactive metabolites such as trichloromethyl radical (CCL\textsubscript{3}-) and its derivative trichloromethyl peroxy radical (CCL\textsubscript{3}O\textsubscript{2}•), generated by cytochrome P\textsubscript{450}2E1 (CYP\textsubscript{450} 2E1). In addition, CCL\textsubscript{4} intermediates also induce the production of reactive oxygen species (ROS), which play an important role in pathogenesis of different degenerative disease like atherosclerosis, liver disorders, lung, aging and diabetes mellitus [11]. Moreover, these ROS and intermediates may activate the reactive nitrogen species (RNS), which are also being involved in the hepatotoxicity production. These reactive species are thought to interact with membrane lipids leading to their peroxidation.

Inducible nitric oxide synthase (iNOS) along with other inflammatory pathways resulted in the tissue damage by CCL\textsubscript{4}. Another proposed mechanism was reactive oxygen species (ROS) are interact with the antioxidant sulfhydrayl group of antioxidant system such as glutathione and others. CCL\textsubscript{4} induced hepatotoxicity characterized by increasing in the liver biomarker enzymes like aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and γ-glutamyltransferase (γ-GT) and histopathological changes like steatosis and centrilobular necrosis due to membrane lipid peroxidation [12].

Although wide range of antioxidants and other allopathic medicines are currently used in the treatment of hepatic disorders. In this present study we evaluated the hepatoprotective effect of Arogyavardhani in CCL\textsubscript{4} induced hepatotoxicity in rats.

MATERIALS & METHODS

Two Samples of Arogyavardhani A (ERM Machine) and Arogyavardhani B (AVD Machine) were collected from the Shree Dhoopathapeshwar Limited (SDL), Mumbai.

Chemicals

All the chemicals required for the experiment were of analytical grade procured from the Sigma- Aldrich, Mumbai.

Animals

30 adult albino rats of wistar strain of both sexes weighing between 180-200g were used in this study, procured from the Haffkine Biopharmaceutical Corporation Ltd., Mumbai. The animals were kept in standard conditions like 22°C ± 2°C and relative humidity 55 ± 15 %. Rats were freely accessible to food and water ad libitum with a 12 hours and 12 hours light and dark cycle. All animals were acclimatized for at least 1 week before start of the study. All the...
experimental protocols were approved by Institutional Animal Ethics Committee and performed according to the CPCSEA guidelines for the care and use of animals (SDARF/PC/2013/02).

Experimental Design

Induction of experimental hepatotoxicity

Hepatotoxicity was induced by administration of CCl₄ at a dose of 3 ml/kg, p.o body weight at first day of the study [13].

Preparation of solutions

CCl₄ was diluted with olive oil in 1:1 ratio, and Arogyavardhini A & B were suspended in 2% CMC solution.

Evaluation of hepatotoxicity

Animals were divided into the five groups, consisting of six animals per each group.

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Normal control (2% CMC 5 ml/kg, p.o)</td>
</tr>
<tr>
<td>II</td>
<td>Negative control (CCl₄ 3 ml/kg, p.o)</td>
</tr>
<tr>
<td>III</td>
<td>Arogyavardhani A (65 mg/kg, p.o) + CCl₄ (3 ml/kg, p.o)</td>
</tr>
<tr>
<td>IV</td>
<td>Arogyavardhani B (65 mg/kg, p.o) + CCl₄ (3 ml/kg, p.o)</td>
</tr>
<tr>
<td>V</td>
<td>Silymarin (50 mg/kg) + CCl₄ (3 ml/kg, p.o)</td>
</tr>
</tbody>
</table>

All the groups were treated for 28 consecutive days. At the end of the day blood samples were collected from retro-orbital technique using CO₂ asphyxiation and sent to the JDC diagnostic center, kharghar, Mumbai for the biochemical & histopathological estimations.

Statistical analysis

Values were represented as mean ± SEM. Data were analysed by the one way analysis of variance (ANOVA) followed by the Tukey's test using graph pad prism 5.1 version. p<0.05 was considered as significant.

Results

Biochemical parameters:

The animals treated with CCl₄ exhibited a significant (p<0.01) rise in SGPT, SGOT levels and in case of ALP total bilirubin levels were also increased significantly (p<0.001). This was significantly (p<0.01) reduced after treatment with Arogyavardhan treated groups, which was almost similar to silymarin treated groups as shown in Table 1.

Histopathological Examination:

Histopathological evaluation of liver revealed CCl₄ induced changes in liver parenchyma viz., centrilobular necrosis (CN), mononuclear cells infiltration (MNC) and Vascular architecture.

Animals from the standard control were too active and respond very quickly as compared with the negative control group. This may be probably due to the CCl₄ is anaesthetic agent and may cause the slowing of reflexes [15].

In the estimation of liver toxicity by the CCl₄ the biomarker enzyme levels are mainly estimated. Serum SGOT, SGPT, ALP, and bilirubin levels are mainly increased in the hepatic damage, because these enzymes are cytoplasmic in nature. CCl₄ induced hepatotoxicity is prototype of hepatotoxicity induced model. Increased levels of SGOT, SGPT, ALP and total bilirubin levels were also increased significantly (p<0.001) in the CCl₄ treated group, which was significantly reduced in the Arogyavardhini treated groups as shown in Table 1.

The animals treated with CCl₄ exhibited a significant (p<0.01) rise in SGPT, SGOT levels and in case of ALP total bilirubin levels were also increased significantly (p<0.001). This was significantly (p<0.01) reduced after treatment with Arogyavardhan treated groups, which was almost similar to silymarin treated groups as shown in Table 1.

The results of the biochemical parameters are given in Table 1. The statistical analysis was carried out using ANOVA followed by Tukey’s test. The results were represented as mean ± SEM. Significant levels were represented as ***p<0.001 vs Positive control, **p<0.01 vs Positive control, *p<0.05 vs Positive control, ns=Non-significant.

DISCUSSION

Ayurvedic preparations were used in the treatment of various disorders from long back onwards and are widely being used. Nowadays, there is a growing interest on Indian traditional system of medicine [14]. The present study was performed to evaluate the protective effect of Arogyavardhani against CCl₄ induced hepatotoxicity. In this study, CCl₄ was given first and separate groups were treated with the Arogyavardhani.

Animals from the standard control were too active and respond very quickly as compared with the negative control group. This may be probably due to the CCl₄ is anaesthetic agent and may cause the slowing of reflexes [15].

In the estimation of liver toxicity by the CCl₄ the biomarker enzyme levels are mainly estimated. Serum SGOT, SGPT, ALP, and bilirubin levels are mainly increased in the hepatic damage, because these enzymes are cytoplasmic in nature. CCl₄ induced hepatotoxicity is prototype of hepatotoxicity induced model. Increased levels of SGOT, SGPT, ALP and total bilirubin levels were also increased significantly (p<0.001) in the CCl₄ treated group, which was significantly reduced in the Arogyavardhan treated groups as shown in Table 1.
SGPT, ALP, and total bilirubin clearly indicate the CCl₄ induced hepatocellular damage and there are number of studies supporting it. Decreased values of enzymes levels in Arogyavardhani treated groups significantly (p<0.01) showed their ability to normalize the status of hepatic damage.

Histopathological assessment of the liver of the normal control group showed the normal architecture of hepatocytes with portal traid. Liver sections derived from hepatotoxic rats showed centrilobular necrosis, mononuclear cells infiltration and vacuolation. These findings were observed in the livers of all rat belonging to Group II (CCl₄). Rats from group III, IV and V treated had far less centrilobular necrosis and vacuolation than the negative control rats (Group II). This could be due to the formation of highly reactive oxygen species, caused by the administration of CCl₄. But, post treatment with Arogyavardhani prevented these effects. Hence, histopathological studies revealed the post treatment of Arogyavardhani clearly exhibited the significant protection of liver cells, which confirmed the above values. So, Present results support the Dange SV et al. [16] as mentioned that CCl₄ increased the serum SGOT, SGPT, ALP, total bilirubin, direct bilirubin levels and Arogyavardhani significantly reduced the CCl₄ induced liver damage.

CONCLUSION

However, results of the present study clearly demonstrated the protective effect of Arogyavardhani against CCl₄ induced hepatotoxicity in rats and supports the notion of Arogyavardhani in the treatment of affections of hepatic & spleen as per traditional system of medicine and claims it's effect as per ancient scripts.

ACKNOWLEDGEMENT

Author would like to say thanks to JDC Veterinary Diagnostic Centre for for laboratory estimations.

REFERENCES